Биогаз – голубое топливо XXI века (обзор) (2012-05-14)
...
Особенности биогазового топлива
Процессы разложения органических отходов с получением горючего газа и его использованием в быту известны давно: в Китае их история насчитывает 5 тыс. лет, в Индии – 2 тыс. лет. Природа биологического процесса разложения органических веществ с образованием метана за прошедшие тысячелетия не изменилась. Но современные наука и техника создали оборудование и системы, позволяющие сделать эти “древние” технологии рентабельными и применяемыми не только в странах с теплым климатом, но и в странах с суровым континентальным климатом, например в России.
Биогаз состоит из метана (55-85%) и углекислого газа (15-45%). Биогаз плохо растворим в воде, его теплота сгорания составляет от 21 до 27,2 МДж/м³. При переработке 1 т свежих отходов крупного рогатого скота и свиней (при влажности 85%) можно получить от 45 до 60 м³ биогаза, 1 т куриного помета (при влажности 75%) – до 100 м³ биогаза. По теплоте сгорания 1 м³ биогаза эквивалентен: 0,8 м³ природного газа, 0,7 кг мазута, 0,6 кг бензина, 1,5 кг дров (в абсолютно сухом состоянии), 3 кг навозных брикетов.
Биогаз, как и природный газ, относится к наиболее чистым видам топлива.
Получение биогаза из органических отходов имеет следующие положительные особенности:
1. осуществляется санитарная обработка сточных вод (особенно животноводческих и коммунально-бытовых), содержание органических веществ снижается до 10 раз;
2. анаэробная переработка отходов животноводства, растениеводства и активного ила позволяет получать уже готовые к использованию минеральные удобрения с высоким содержанием азотной и фосфорной составляющей (в отличие от традиционных способов приготовления органических удобрений методами компостирования, при которых теряется до 30-40% азота);
3. при метановом брожении высокий (80-90%) КПД превращения энергии органических веществ в биогаз;
4. биогаз с высокой эффективностью может быть использован для получения тепловой и электрической энергии, а также в качестве топлива для двигателей внутреннего сгорания;
5. биогазовые установки могут быть размещены в любом регионе страны и не требуют строительства дорогостоящих газопроводов и сложной инфраструктуры;
6. биогазовые установки могут частично или полностью заменить устаревшие региональные котельные и обеспечить электроэнергией и теплом близлежащие деревни, поселки, небольшие города.
Биогазовые технологии позволяют наиболее рационально и эффективно конвертировать энергию химических связей органических отходов в энергию газообразного топлива и высокоэффективных органических удобрений.
Что нужно для развития биогазовых технологий в России
Для широкого распространения биогазовой технологии особое значение имеют следующие факторы:
– стоимость установки;
– удельная производительность;
– полнота переработки сброженной массы и биогаза в наиболее ценные продукты по сравнению с исходным сырьем;
– эффективность в решении задач, связанных с охраной окружающей среды;
– высокая эксплуатационная надежность и простота обслуживания;
– желание быть энергонезависимым.
Стоимость установки в значительной степени определяется простотой ее технологической схемы и отсутствием в ней уникальных компонентов.
На современном этапе развития биотехнологии важное значение приобретает интенсификация процесса метанового сбраживания и снижение за счет этого капитальных и эксплуатационных затрат.
Опыт внедрения биоэнергетических установок за рубежом свидетельствует об ускоренном развитии этого направления. Примерами соответствующих технических решений могут служить установки модульного типа, разработанные фирмами Швеции, Германии, Финляндии, выполняемые на основе горизонтальных цилиндрических реакторов с продольными мешалками. Другое направление в реакторостроении представляют крупные вертикальные метантенки, собираемые на месте.
Несмотря на то, что биогазовый реактор вносит наибольшую единичную долю в стоимость всей установки, затраты на него, как правило, не превышают 30% всех затрат на биоэнергетическую установку. Вследствие этого более существенным является увеличение скорости переработки и связанное с этим уменьшение объема реактора, что позволит обеспечить необходимый экономический эффект раньше, чем произойдет существенное уменьшение затрат на комплектующее оборудование, входящее в состав биоэнергетической установки или значительное сокращение его номенклатуры в связи с существенным упрощением установок.
К производству биогаза относится также получение лендфилл-газа или биогаза из мусорных свалок. В настоящее время во многих странах создаются специальные обустроенные хранилища для твердых бытовых отходов (ТБО) с целью извлечения из них биогаза, используемого для производства электрической и тепловой энергии.
Большое количество биогазового топлива производится при переработке ТБО городов: в США – эквивалентно 2 200 000 Гкал, Германии – 3 300 000 Гкал, Японии – 1 400 000 Гкал, Швеции – 1 200 000 Гкал. В Китае около 10 млн “семейных” биогазовых реакторов ежегодно производят около 7,3 млрд м³ биогаза (по данным 2005 г.). Кроме этих установок в Китае работают 600 больших и средних биогазовых станций, которые используют органические отходы животноводства и птицеводства, винных заводов (общий ежегодный объем производства биогаза составляет 220 тыс. м³ ), 24 тыс. биогазовых очистительных реакторов для обработки отходов городов, а также около 190 биогазовых электростанций с ежегодным производством 3 млн кВт·ч. Биогазовая продукция в Китае оценивается в 7 900 000 Гкал/год.
Перспективы развития биогазовых технологий в России
По результатам исследований Института энергетической стратегии РФ общее количество органических отходов агропромышленного комплекса (АПК) России в 2005 г. составило 225 млн т (в расчете на сухое вещество; по энергосодержанию эквивалентно 80,6 млн т н.э.), включая:
– птицеводство – 5,8 млн т;
– животноводство – 58,3 млн т;
– растениеводство – 147 млн т;
– перерабатывающая промышленность 14 млн т.
Количество ТБО городов составило 16 млн т, осадки коммунальных стоков – 4,9 млн т.
Как свидетельствуют приведенные выше данные, наибольшую массу среди органических отходов АПК занимают отходы растениеводства (солома, стебли, лузга и т.д.). Их переработка в биогаз одновременно с отходами животноводства и птицеводства требует универсальной биогазовой технологии и соответствующего оборудования.
Исследование современного АПК России, проведенное Институтом энергетической стратегии, показало, что до 50% производимой основной продукции приходится на индивидуальные крестьянские хозяйства. Поэтому развитие биогазовой промышленности будет идти по двум направлениям: создание крупных биоэнергетических станций и создание фермерских и крестьянских биогазовых установок.
Россия находится в зоне рискованного земледелия и по климатическим условиям, и по характеристике большая часть почв – малоурожайные подзолистые почвы, требующие постоянного внесения органических удобрений. Поэтому в средних и северных регионах Европейской России, в земледельческих районах Сибири потребность в органических удобрениях будет постоянной, и она будет определяющей в развитии биогазовых технологий. Использование таких технологий и созданного на их основе оборудования позволит в ближайшие годы: полностью решить в сельской местности проблему всех органических отходов, включая коммунальные стоки и ТБО, обустроить дома сельских жителей современными санитарно-гигиеническими системами европейского типа и оказать существенную помощь в решении проблем энергосбережения.
Прогресс в использовании биогазовых установок привел к существенному повышению эффективности их работы. Возможность решения не только энергетических (производство электроэнергии и тепла путем сжигания биогаза), но и экологических (утилизация отходов с/х и пищевой промышленности) и агрохимических (производство удобрений) проблем позволили значительно повысить рентабельность таких установок и существенно сократить сроки окупаемости. Кризисные явления в экономике России так и не остановили рост тарифов естественных монополий, что еще больше повысит привлекательность биогазовых установок в новых экономических реалиях.
Источник информации:
Научно-популярный портал "А-энергия"http://www.energy-fresh.ru
.
Процессы разложения органических отходов с получением горючего газа и его использованием в быту известны давно: в Китае их история насчитывает 5 тыс. лет, в Индии – 2 тыс. лет. Природа биологического процесса разложения органических веществ с образованием метана за прошедшие тысячелетия не изменилась. Но современные наука и техника создали оборудование и системы, позволяющие сделать эти “древние” технологии рентабельными и применяемыми не только в странах с теплым климатом, но и в странах с суровым континентальным климатом, например в России.
Биогаз состоит из метана (55-85%) и углекислого газа (15-45%). Биогаз плохо растворим в воде, его теплота сгорания составляет от 21 до 27,2 МДж/м³. При переработке 1 т свежих отходов крупного рогатого скота и свиней (при влажности 85%) можно получить от 45 до 60 м³ биогаза, 1 т куриного помета (при влажности 75%) – до 100 м³ биогаза. По теплоте сгорания 1 м³ биогаза эквивалентен: 0,8 м³ природного газа, 0,7 кг мазута, 0,6 кг бензина, 1,5 кг дров (в абсолютно сухом состоянии), 3 кг навозных брикетов.
Биогаз, как и природный газ, относится к наиболее чистым видам топлива.
Получение биогаза из органических отходов имеет следующие положительные особенности:
1. осуществляется санитарная обработка сточных вод (особенно животноводческих и коммунально-бытовых), содержание органических веществ снижается до 10 раз;
2. анаэробная переработка отходов животноводства, растениеводства и активного ила позволяет получать уже готовые к использованию минеральные удобрения с высоким содержанием азотной и фосфорной составляющей (в отличие от традиционных способов приготовления органических удобрений методами компостирования, при которых теряется до 30-40% азота);
3. при метановом брожении высокий (80-90%) КПД превращения энергии органических веществ в биогаз;
4. биогаз с высокой эффективностью может быть использован для получения тепловой и электрической энергии, а также в качестве топлива для двигателей внутреннего сгорания;
5. биогазовые установки могут быть размещены в любом регионе страны и не требуют строительства дорогостоящих газопроводов и сложной инфраструктуры;
6. биогазовые установки могут частично или полностью заменить устаревшие региональные котельные и обеспечить электроэнергией и теплом близлежащие деревни, поселки, небольшие города.
Биогазовые технологии позволяют наиболее рационально и эффективно конвертировать энергию химических связей органических отходов в энергию газообразного топлива и высокоэффективных органических удобрений.
Что нужно для развития биогазовых технологий в России
Для широкого распространения биогазовой технологии особое значение имеют следующие факторы:
– стоимость установки;
– удельная производительность;
– полнота переработки сброженной массы и биогаза в наиболее ценные продукты по сравнению с исходным сырьем;
– эффективность в решении задач, связанных с охраной окружающей среды;
– высокая эксплуатационная надежность и простота обслуживания;
– желание быть энергонезависимым.
Стоимость установки в значительной степени определяется простотой ее технологической схемы и отсутствием в ней уникальных компонентов.
На современном этапе развития биотехнологии важное значение приобретает интенсификация процесса метанового сбраживания и снижение за счет этого капитальных и эксплуатационных затрат.
Опыт внедрения биоэнергетических установок за рубежом свидетельствует об ускоренном развитии этого направления. Примерами соответствующих технических решений могут служить установки модульного типа, разработанные фирмами Швеции, Германии, Финляндии, выполняемые на основе горизонтальных цилиндрических реакторов с продольными мешалками. Другое направление в реакторостроении представляют крупные вертикальные метантенки, собираемые на месте.
Несмотря на то, что биогазовый реактор вносит наибольшую единичную долю в стоимость всей установки, затраты на него, как правило, не превышают 30% всех затрат на биоэнергетическую установку. Вследствие этого более существенным является увеличение скорости переработки и связанное с этим уменьшение объема реактора, что позволит обеспечить необходимый экономический эффект раньше, чем произойдет существенное уменьшение затрат на комплектующее оборудование, входящее в состав биоэнергетической установки или значительное сокращение его номенклатуры в связи с существенным упрощением установок.
К производству биогаза относится также получение лендфилл-газа или биогаза из мусорных свалок. В настоящее время во многих странах создаются специальные обустроенные хранилища для твердых бытовых отходов (ТБО) с целью извлечения из них биогаза, используемого для производства электрической и тепловой энергии.
Большое количество биогазового топлива производится при переработке ТБО городов: в США – эквивалентно 2 200 000 Гкал, Германии – 3 300 000 Гкал, Японии – 1 400 000 Гкал, Швеции – 1 200 000 Гкал. В Китае около 10 млн “семейных” биогазовых реакторов ежегодно производят около 7,3 млрд м³ биогаза (по данным 2005 г.). Кроме этих установок в Китае работают 600 больших и средних биогазовых станций, которые используют органические отходы животноводства и птицеводства, винных заводов (общий ежегодный объем производства биогаза составляет 220 тыс. м³ ), 24 тыс. биогазовых очистительных реакторов для обработки отходов городов, а также около 190 биогазовых электростанций с ежегодным производством 3 млн кВт·ч. Биогазовая продукция в Китае оценивается в 7 900 000 Гкал/год.
Перспективы развития биогазовых технологий в России
По результатам исследований Института энергетической стратегии РФ общее количество органических отходов агропромышленного комплекса (АПК) России в 2005 г. составило 225 млн т (в расчете на сухое вещество; по энергосодержанию эквивалентно 80,6 млн т н.э.), включая:
– птицеводство – 5,8 млн т;
– животноводство – 58,3 млн т;
– растениеводство – 147 млн т;
– перерабатывающая промышленность 14 млн т.
Количество ТБО городов составило 16 млн т, осадки коммунальных стоков – 4,9 млн т.
Как свидетельствуют приведенные выше данные, наибольшую массу среди органических отходов АПК занимают отходы растениеводства (солома, стебли, лузга и т.д.). Их переработка в биогаз одновременно с отходами животноводства и птицеводства требует универсальной биогазовой технологии и соответствующего оборудования.
Исследование современного АПК России, проведенное Институтом энергетической стратегии, показало, что до 50% производимой основной продукции приходится на индивидуальные крестьянские хозяйства. Поэтому развитие биогазовой промышленности будет идти по двум направлениям: создание крупных биоэнергетических станций и создание фермерских и крестьянских биогазовых установок.
Россия находится в зоне рискованного земледелия и по климатическим условиям, и по характеристике большая часть почв – малоурожайные подзолистые почвы, требующие постоянного внесения органических удобрений. Поэтому в средних и северных регионах Европейской России, в земледельческих районах Сибири потребность в органических удобрениях будет постоянной, и она будет определяющей в развитии биогазовых технологий. Использование таких технологий и созданного на их основе оборудования позволит в ближайшие годы: полностью решить в сельской местности проблему всех органических отходов, включая коммунальные стоки и ТБО, обустроить дома сельских жителей современными санитарно-гигиеническими системами европейского типа и оказать существенную помощь в решении проблем энергосбережения.
Прогресс в использовании биогазовых установок привел к существенному повышению эффективности их работы. Возможность решения не только энергетических (производство электроэнергии и тепла путем сжигания биогаза), но и экологических (утилизация отходов с/х и пищевой промышленности) и агрохимических (производство удобрений) проблем позволили значительно повысить рентабельность таких установок и существенно сократить сроки окупаемости. Кризисные явления в экономике России так и не остановили рост тарифов естественных монополий, что еще больше повысит привлекательность биогазовых установок в новых экономических реалиях.
Источник информации:
Научно-популярный портал "А-энергия"http://www.energy-fresh.ru
.